541 research outputs found

    General structure of the solutions of the Hamiltonian constraints of gravity

    Get PDF
    A general framework for the solutions of the constraints of pure gravity is constructed. It provides with well defined mathematical criteria to classify their solutions in four classes. Complete families of solutions are obtained in some cases. A starting point for the systematic study of the solutions of Einstein gravity is suggested.Comment: 17 pages, LaTeX, submitted to International J. of Geom. Meth. in Modern Physics. Added comments in the last sectio

    Tetrads in SU(3) X SU(2) X U(1) Yang-Mills geometrodynamics

    Full text link
    The relationship between gauge and gravity amounts to understanding underlying new geometrical local structures. These structures are new tetrads specially devised for Yang-Mills theories, Abelian and Non-Abelian in four-dimensional Lorentzian spacetimes. In the present manuscript a new tetrad is introduced for the Yang-Mills SU(3) X SU(2) X U(1) formulation. These new tetrads establish a link between local groups of gauge transformations and local groups of spacetime transformations. New theorems are proved regarding isomorphisms between local internal SU(3) X SU(2) X U(1) groups and local tensor products of spacetime LB1 and LB2 groups of transformations. The new tetrads and the stress-energy tensor allow for the introduction of three new local gauge invariant objects. Using these new gauge invariant objects and in addition a new general local duality transformation, a new algorithm for the gauge invariant diagonalization of the Yang-Mills stress-energy tensor is developed.Comment: There is a new appendix. The unitary transformations by local SU(2) subgroup elements of a local group coset representative is proved to be a new local group coset representative. This proof is relevant to the study of the memory of the local tetrad SU(3) generated gauge transformations. Therefore, it is also relevant to the group theorems proved in the paper. arXiv admin note: substantial text overlap with arXiv:gr-qc/060204

    Conformal ``thin sandwich'' data for the initial-value problem of general relativity

    Full text link
    The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, their proper-time separation up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the {\it same} elliptic form as does the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal ``thin sandwich'' viewpoint coupled with the transformation properties of the lapse function.Comment: 7 pages, RevTe

    Constraint and gauge shocks in one-dimensional numerical relativity

    Get PDF
    We study how different types of blow-ups can occur in systems of hyperbolic evolution equations of the type found in general relativity. In particular, we discuss two independent criteria that can be used to determine when such blow-ups can be expected. One criteria is related with the so-called geometric blow-up leading to gradient catastrophes, while the other is based upon the ODE-mechanism leading to blow-ups within finite time. We show how both mechanisms work in the case of a simple one-dimensional wave equation with a dynamic wave speed and sources, and later explore how those blow-ups can appear in one-dimensional numerical relativity. In the latter case we recover the well known ``gauge shocks'' associated with Bona-Masso type slicing conditions. However, a crucial result of this study has been the identification of a second family of blow-ups associated with the way in which the constraints have been used to construct a hyperbolic formulation. We call these blow-ups ``constraint shocks'' and show that they are formulation specific, and that choices can be made to eliminate them or at least make them less severe.Comment: 19 pages, 8 figures and 1 table, revised version including several amendments suggested by the refere

    Proof of the Thin Sandwich Conjecture

    Get PDF
    We prove that the Thin Sandwich Conjecture in general relativity is valid, provided that the data (gab,g˙ab)(g_{ab},\dot g_{ab}) satisfy certain geometric conditions. These conditions define an open set in the class of possible data, but are not generically satisfied. The implications for the ``superspace'' picture of the Einstein evolution equations are discussed.Comment: 8 page

    The Cauchy problem on a characteristic cone for the Einstein equations in arbitrary dimensions

    Full text link
    We derive explicit formulae for a set of constraints for the Einstein equations on a null hypersurface, in arbitrary dimensions. We solve these constraints and show that they provide necessary and sufficient conditions so that a spacetime solution of the Cauchy problem on a characteristic cone for the hyperbolic system of the reduced Einstein equations in wave-map gauge also satisfies the full Einstein equations. We prove a geometric uniqueness theorem for this Cauchy problem in the vacuum case.Comment: 83 pages, 1 figur

    Distinction of representations via Bruhat-Tits buildings of p-adic groups

    Full text link
    Introductory and pedagogical treatmeant of the article : P. Broussous "Distinction of the Steinberg representation", with an appendix by Fran\c{c}ois Court\`es, IMRN 2014, no 11, 3140-3157. To appear in Proceedings of Chaire Jean Morlet, Dipendra Prasad, Volker Heiermann Ed. 2017. Contains modified and simplified proofs of loc. cit. This article is written in memory of Fran\c{c}ois Court\`es who passed away in september 2016.Comment: 33 pages, 4 figure

    On two theorems for flat, affine group schemes over a discrete valuation ring

    Full text link
    We include short and elementary proofs of two theorems characterizing reductive group schemes over a discrete valuation ring, in a slightly more general context.Comment: 10 pages. To appear in C. E. J.

    Resolutions for representations of reductive p-adic groups via their buildings

    Full text link
    Schneider-Stuhler and Vigneras have used cosheaves on the affine Bruhat-Tits building to construct natural finite type projective resolutions for admissible representations of reductive p-adic groups in characteristic not equal to p. We use a system of idempotent endomorphisms of a representation with certain properties to construct a cosheaf and a sheaf on the building. We establish that these are acyclic and compute homology and cohomology with these coefficients. This implies Bernstein's result that certain subcategories of the category of representations are Serre subcategories. Furthermore, we also get results for convex subcomplexes of the building. Following work of Korman, this leads to trace formulas for admissible representations.Comment: second version, some minor correction

    Conjugacy theorems for loop reductive group schemes and Lie algebras

    Get PDF
    The conjugacy of split Cartan subalgebras in the finite dimensional simple case (Chevalley) and in the symmetrizable Kac-Moody case (Peterson-Kac) are fundamental results of the theory of Lie algebras. Among the Kac-Moody Lie algebras the affine algebras stand out. This paper deals with the problem of conjugacy for a class of algebras --extended affine Lie algebras-- that are in a precise sense higher nullity analogues of the affine algebras. Unlike the methods used by Peterson-Kac, our approach is entirely cohomological and geometric. It is deeply rooted on the theory of reductive group schemes developed by Demazure and Grothendieck, and on the work of J. Tits on buildingsComment: Publi\'e dans Bulletin of Mathematical Sciences 4 (2014), 281-32
    • …
    corecore